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On the low- and high-frequency limit of quantum scattering 
by time-dependent potentials 
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lnslitul de Physique TheOrique, &le Polytechnique FMhIe  de Lausme, CH-1015 
Lausme, Switzerland 

Received 18 November 1994, in final form I5 February 1995 

Ahstrack. Using time-dependent methods, we study the scatrering of a quantum mechanical 
particle by short-range potentials with very slow or very fast periodic variations in time. The 
low- and high-frequency limils are derived as well as their f ist  non-vanishing corrections, and 
their physical significance discussed. 

1. Introduction 

The scattering of a quantum mechanical particle by a time-dependent short-range potential 
u ( x ,  t )  has been the subject of numerous investigations, at a general theoretical level and 
for specific systems. Typical examples are: 

(i) tunnelling of a particle through a modulated barrier 

u ( x ,  t )  = WI@) + h ( t ) w ( x )  (1.1) 

where W I ( X )  and W Z ( X )  are static potentials, and h( t )  a timedependent coupling strength 
(see for instance r1-61); 

(ii) scattering by a moving centre [5-101 

u ( x ,  t )  = u ( x  - a @ ) )  (1.2) 

where n(f) is a prescribed classical trajectory. Such time-displaced potentials occur for 
instance in the study of the AC Stark effect and in the modelling of chemical reactions at 
surfaces. 

In this paper, we consider time-dependent potentials of the form u(x ,  ut), where U-' is 
either a very large or a very small parameter. We shall mainly be concerned with potentials 
that are periodic in time, u(x ,  t) = u(x ,  t + 2r), so that o + 0 is referred to as the low- 
frequency (or adiabatic) limit and o + CO as the high-frequency limit. This includes, for 
instance, the system (1.1) with an oscillating barrier h(ot )  = h@cos(ot), and the system 
(1.2) with an oscillating centre a(of) = %cos(ot). 

Although the general formalism is well developed (existence of wave operators, unitarity 
of the scattering operator, see for instance [11-18]), it is notoriously difficult to perform 
explicit analytical calculations of scattering probabilities, even in the simplest models. It 
is therefore of interest to control the limit situations o + 0 and o + 03, as well as the 
corresponding asymptotic expansions, and to discuss their physical significance. 
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The result is that in both cases, for suitably smooth and short-range potentials, the 
scattering by the time-dependent potential effectively reduces to a static one. In the low- 
frequency limit, according to the discussion in section 2, we show that the scattering 
probabilities converge to the average probabilities associated with the family of time- 
independent potentials u(x,01),  0 < 01 .= 2 r .  In the high-frequency limit, we obtain 
that the scattering quantities approach those associated with the static average potential 

In section 2, we discuss the general aspects of scattering with time-dependent potentials, 
and, in particular, the implications of the fact that the dynamics is not invariant under time 
translations. One point is that particles entering the interaction region at different times do 
not experience the same configuration of the potential. We are thus led to distinguish the 
following two situations, the first one being the one more commonly realized. 

(i) The arrival times of the particles in the interaction region have no relation with the 
characteristic time scale w-' of the variation in the potential. This happens when there is no 
control on the times at which the particles in the incident beam are prepared. One has the 
same effect with a single particle if the energy spreading A E  of the incoming wavepacket 
is sufficiently nanow to give a time dispersiont Ai N h / A E  larger than o r 1 .  In all these 
situations, only averages of scattering probabilities over the time scale w-' can be observed. 

(ii) The incoming beam consists of regular short pulses in phase with the variation in 
the potential so that all particles feel the same potential when they enter the interaction 
region. 

Section 3 is devoted to the adiabatic Limit of the scattering operator. The limit has 
been studied in [4,11,20,21], and an asymptotic expansion of the S-operator is presented 
in 1221. Here we state and prove the result up to first order in w& At the lowest order, the 
transition probabilities reduce to those associated with the static potential u ( x ,  a), a fixed, 
in case (ii), or to their average in case (i). 

The first-order correction in w can be split into the sum of two terms. The first one 
involves again only static transition probabilities, but for the potential shifted in time, 
according to the time of incidence of the incoming particle. It thus makes explicit, at 
first order in w,  that incoming states prepared at different times (i.e. differing by energy- 
dependent phase factors) see different configurations of the potential. This term contributes 
non-trivially in case (ii), but its average vanishes so it does not contribute in case (i). The 
second term has a more complicated structure: it embodies, at order w, the dynamical effects 
due to the effective time variation in the potential, and can be expressed in terms of energy 
derivatives of static quantities. Then, we discuss briefly the first correction to the adiabatic 
limit of scattering events when a fixed number n of energy quanta hw is exchanged with 
the external field (sidebands) as well as the corresponding energy transfer. 

In section 4, we address the problem of the high-frequency limit of the scattering 
operator. The limit is of interest in the physics of atoms in intense laser fields [7-91 (it 
has also been investigated numerically in IS]), but we are unaware of a general proof of its 
existence and of its first non-vanishing correction. 

In section 5 we specialize our results to the case of transmission and reflection 
probabilities in the one-dimensional scattering problem. In particular, the statistics of quanta 
will be obtained explicitly in the case of the time-displaced potential (1.2). Finally, in 
section 6, we present some concluding remarks. 

U O ( X )  = & [:z dO1 U ( X ,  01). 

t We recall that the proper sense of the time-energy uncertainty relation AEAt IT 1, for a free particle, is that one 
is unable to say when it will cross a given surlxe with w exactitude greater than At h/AE: see lor instance 
1191. 
$ Reference 1221 has appeared during the completion of this work and the proof of proposition 1 is similar. 



Quantum scanering by time-dependent potentials 

2. The scattering problem for time-dependent potentials: general setting 

We are concerned with scattering systems with time-dependent potentials V(ot), where 
V(wt) is a multiplication operator by a sufficiently short-ranged function u ( x , o t )  in 
configuration space Rd,  d > 1. The total Hamiltonian is 

2405 

H(wt)  = Ho + V ( o t )  (2.1) 

where HO = -A/2m is the free Hamiltonian (m is the mass of the particle and we have set 
the Planck constant f i  = 1) and o is a parameter. By U&, to) we denote the corresponding 
evolution operator with initial condition U&, to) = 1. It is known that for a large class of 
potentials u(x ,  t ) ,  that we do not need to specify here (see section 3). and any real r .  there 
exist wave operators 

and a unitary scattering operator 

~ ( o ,  r )  = ~\(o, r)Q-(o,  r ) .  (2.3) 

The wave operators Q ( w )  = Q*(w,O) and Q*(o. T) are related by the generalized 
intertwining property 

~ * ( o ,  r )  = U@(r, o)n*(o)e'"' (2.4) 

S(W,  r )  = e-iHorS(o)e'HOT. (2.5) 

which, in turn, yields for the scattering operators S(w) S ( w ,  0) and S(w, r )  the relation 

Let F be an arbitrary projection operator in 'H = LZ(Rd), commuting with Ho. We are 
interested in the quantity 

'PF(O. 5, v)  = IIFw, r)rpll: = IIFS(w)eiHoT'pIIi (2.6) 

which is the probability of finding asymptotically the scattering state in the subspace F X ,  
for an incoming wavepacket e?nr'p. Clearly, 'p and dHQr'p represent two identically prepared 
states, except for a time lag r .  Since the interaction is not invariant under time translations, 
all possible scattering events are not described by a single scattering operator, but by the 
whole family S(o, T), r E R. 

In the discussion hereabove, the origin of time was conventionally fixed so that the 
potential has amplitude u ( x ,  0) at t = 0. We could equally as well have chosen the potential 
to equal u(x, a) at t = 0, for some a # 0. In this case, we replace (2.1) by 

H ( o t  +a) = Ho + V ( o t  + 01) (2.7) 

with the corresponding evolution U z ( t ,  to), wave operators Qz(o, T) and scattering operator 
S'(o, 5). Now, we have the equality 

U,"'(t, fa) = U& + r ,  to + r )  (2.8) 
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since both evolution operators in (2.8) obey the same differential equation with the same 
initial condition at f = b. Setting Sa@) = P ( w ,  O), this implies. in view of the definitions 
(2.2), (2.3), that 
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S(o, r )  = S"'(o). (2.9) 

Combining (2.5) with (2.9) yields 

= e-iHou/mqo)eiffau/m (2.10) 

or, in differential form, 

ioa,s"(o) = [Ho, s"(w)]. (2.1 1) 

Equations (2.9) or (2.10) may be seen as a precise version of the simple statement 
that two incoming packets with a time lag r will feel the external potential with the time 
difference r.  Let us restrict OUT attention to potentials periodic in time V ( t )  = V ( t  t 2rr). 
so that V(ot) has period & / W .  This implies immediately, by (2.10), 

S U ( ~ )  = se+=(@) = e-iHoWaSyo)eiH02n/n, (2.12) 

i.e. the scattering operator commutes with free evolution over one period. The commutation 
relation (2.12) is the precise law of quasi-energy conservation which states that, while HO 
may not be conserved by scattering, the energy can be changed only by discrete quanta 
no, n = 0, &I, f 2 , .  . . [14,18]. In view of the periodicity Sa@) = SUtw(o), we can 
introduce the Fourier decomposition of the scattering operator 

with 

S"(0) = - * /* daSn(o)ei"*. 
2rr --I 

(2.13) 

(2.14) 

The coefficients S"(o), n # 0, are called the 'sideband' contributions to the total scattering 
operator. Relation (2.1 1) implies obviously 

noS"(o) = [Ho. S"(o)]. (2.15) 

Thus, every sideband S"(o), n f 0. describes scattering events with an energy shift equal 
to no, or, in other words, with emission (n > 0) or absorption (n < 0) of exactly n quanta 
of energy w.  The probabilities of such events are 

P;(o. bo) = IIFs"(o)boII:. (2.16) 

In particular, for F = I, 

P"(W bo) = Il.Y"(@)boll: (2.17) 
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is the probability of emitting (n > 0) or absorbing (n < 0) n quanta during the scattering 
process. 

The scattering probabilities that are relevant to situations (i) and (ii) described in the 
introduction are 

?;(U, (0) = IIFs"(w)(011: = 5 (p, s"i(w)Fs"(w)p)e""-"" (2.18) 

if the scattering is sensitive to the precise time at which the interaction occurs (case (ii)), 
and the corresponding average 

n.m=-m 

(2.19) 

in the other situations (case 0)). Formula (2.19) applies, for instance, if the initial beam 
is constituted of a succession of incoming wavepackets with a small time lag d t ,  that are 
scattered independently, and if the counters integrate all events during the period 2rr/o. 
Then, the observed probability will indeed be 

(2.20) 

where the equality follows from (2.9) and (2.10). This applies also if the incoming state 
rp(E), as a function of energy E ,  has support in an interval A E  4 w,  since then, as 
a consequence of (2.15). the off-diagonal contributions (9. Snt(w)FSm(w)(p) vanish for 
n # m. Thus, for a small spreading in energy, i.e. for an uncertainty in time larger than 
%/U, (2.18) also reduces to (2.19). 

Notice that since the asymptotic observable FEL(w) = S"t(w)FS'(w) also obeys (2.11) 
i.e. 

iw&F"(o) = [Ha, Fa(@)] (2.21) 

the average F ( w )  = &lTrda!Fe(w), as well as the sideband contributions F"(w) = 
S"'(w)FS"(w) commute with the kinetic energy Ha. Thus, case (i) involves only the 
part of these observables on the energy shell, whereas in situation (ii), probabilities (2.18) 
depend, in particular, on the phase of the incident wavepacket and cannot simply be reduced 
to on-shell calculations. 

Finally, let us consider the total energy variation in the particle during the scattering 
process 

A"(@) = H~(w) -Ha (2.22) 

where Ht(w)  = Sat(w)HoSa(w) is the asymptotic outgoing energy. According to (2.11). 
this quantity is related to the scattering operator by 

A"(w) = ios"+(w)a.S"(w). (2.23) 

Introducing the sidebands (2.13) on the right-hand side of (2.23) and averaging over (Y gives 
the quasi-energy conservation law for an incoming state (p: 

(2.24) 

where the ?"(U, (0) are defined in (2.17). Equation (2.24) is an energy balance: the loss 
or gain in energy of the scattered particles equals the average energy emitted or absorbed 
from the external field. 
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3. The low-frequency limit 

3.1. The adiabatic theorem 

Throughout the paper, we assume that the potential satisfies the bound 
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M x ,  t)l < b w - v  rl > 1 (3.1) 

where b is a constant independent of t and we have introduced the notation ( x )  = 
(1 + Ix1*)'/'. Note that an equivalent formulation of (3.1) is to require that ( q ) l V ( t )  is 
bounded uniformly with respect to I ,  where q = (41, . . . , q d )  is the multiplication operator 

Then, one knows that the wave operators a$(@) associated with the Hamiltonian (2.7) 
exist as strong limits. In the periodic case, it is shown in 1121 that they are completet, 
and the scattering operator F ( w )  is unitary. Unitarily of the wave operators has also 
been proven for repulsive potentials, not necessarily time-periodic [15], and for potentials 
switched on and off in time [I I]. We also quote the results from [16] for the case of moving 
potentials and for [17] for Hamiltonians asymptotically constant in time. 

For the adiabatic as well as for the high-frequency limit (section 4), our proofs rely on 
the fact that, for suitably smooth incoming states, scattering states leave sufficiently rapidly 
a localized region in configuration space, This is expressed in the following lemma. 

Lemma. Consider the scattering system (H, Ho). H = HO + V ,  where V is the 
multiplication by a static potential u ( x )  such that both u ( x )  and x . V u ( x )  satisfy (3.1). 
Let Q* be the corresponding wave operators and V the dense subset of X of vectors 
~ ( x )  such that their Fourier bansform @(k) are infinitely differentiable functions of k with 
compact support and no support at the origin. Then, for any (p E V and E z 0, there exists 
a constant c, independent of t ,  such that 

by x = (XI, . . . , xd) .  

II(q)-"e-iHtQ2_q112 4 c ( l +  Itl)'-v. (3.2) 

The same estimate holds for C L  replaced by a+, 

The lemma is an immediate consequence of proposition 2 in [23]$. It asserts that the 
scattering state e-jH'f2-(p propagates away sufficiently fast as t + 500, provided that the 
incoming state is smooth and has non-vanishing kinetic energy, and rl is large enough. 

The above mentioned results hold for a wider class of potentials also allowing for 
local singularities (see [12,23]). To avoid a technical development, we deal here only with 
bounded potentials. 

To formulate the adiabatic limit, we introduce the scattering system (H(a) ,Ho),  
H ( a )  = HO $- V(or), determined by the static interaction V((Y) ,  (Y fixed, with corresponding 
wave operators S2$ and scattering~operator S' = S2;'SZ. Then, we expect that SQ(w) 
approaches S' as w 

t Complete means iha! the ranges R(Q:(o)) = R ( P ( ( 0 ) )  =absolutely continuous subspace of lhe monodromy 

t Since @(k) i s  assumed lo be infinitely differentiable, 'p is in the domain of I q l P ,  for all p > I. mnd we have se1 
the function @(H) occurring in equation (30) of [23] equal lo I on the support of 6, by intertwining. 

0. More precisely, we have the following proposition. 

OpeIalOr (l,"(?Z/O. 0).  
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(i) If V(t) satisfy (3.1) with 9 > 1 and is norm-continuous with respect to Proposition I .  
t ,  then 

(3.3) 

(ii) If in addition V(t) is continuously differentiable in norm with respect to t, u(x ,  t ) ,  
x . Vu(x, t )  and & v ( x ,  t )  satisfy (3.1) with q z 2, then, for (0 E D, 

Sn(W)p = sap + wsyp + wg"(w) (3.4) 

where 
m 

Spv = -i 1, dt t e i H o f Q ~ t V ' ( a ) Q ~ e - i H n t ~  (3.5) 

and V'@) = a,V(a). The vector g"(w) has a uniformly bounded norm and converges 
weakly to zero as w -+ 0. 

Proof. (i) We set 

Qf - e S Z ~ ( O )  = U,"'(t, O)e-"o'. (3.6) n - eiH(u)r -Mol 

Then, 

Il(Q",4 - Q",)(ollz < Il(Q?@) - Qg(4)vllz + I l ( q  - Qg)vllz + Il(Q%O - Qgtp)vllz. 
(3.7) 

We have the standard estimate for rp E 9, 

Using (3.1) and applying (3.2) in the free case with q > 1 and E sufficiently small, we see 
that (3.8) tends to zero as t -+ 00, uniformly with respect to w .  The same is obviously true 
for the second term on the right-hand side of (3.7). To estimate the last term in (3.7) we 
write 

Qp(o) = U,"'@, O)e-"("h2g = Qy - i ds U,"'(s, O)(V(os + a )  - V(a))e-'H'U)'Qp 

(3.9) 
l 

leading to 

I l (Qp(4 - Qp)vllz < Jld'ds IIV(os + a )  - V@N (3.10) 

which tends to zero as w -+ 0, for any fixed t, because of the norm-continuity of V(t). Thus, 
letting first U + 0, and then f -+ 00 in (3.7), we have shown that lim,,o Q$(w)p = Q?v 
for any rp E D, and the same proof clearly holds for QP(w). Since the f2z(w) are uniformly 



2410 

bounded with respect to w, the result is me for all rp E H ,  implying that Sa(@) converges 
weakly to S* as w + 0. But, since the S'(w) are isometric, S'(o) + S' strongly. 

(ii) Consider the scattering system defined by the pair (if(@? + a), If(@). It is easy to 
see that the corresponding wave operators %(U) exist on the range R(S2:) = R(Q.:). For 
this, it suffices to note, following the estimate (3.8), that for rp E D, 

Ph A Martin and M Sassoli de Bianchi 

1) (v(wt+a)- V(a))e-iH(a)r R" -911~ < (11 v(ot+a)(q)O1l+ll v ( ~ ) ( ~ ) " I I ) I I ( ~ ) - ~ ~ - ~ ~ ( ~ ) ' Q . ~  -PI12 

< DC(l + lfl)-q (3.11) 

which is integrable for E sufficiently small. This enables us to represent the full scattering 
operator S'(o) by the chain rule 1181, as 

S"(0) = n";tS"(w)Q.: (3.12) 

where are the wave operators belonging to (H(a), Ho) and sm(w)  = f$(w)@(co) is 
the scattering operator of the system (H(wt+a),  H(a)), defined on R(Q.:). Let @ = REP, 
rp E D. One can represent 3'(w)@ as a weak limit in R ( W )  by 

( x ,  s " ( ~ ) @ )  = Li tx, z'i"(w; f, to)@) x E R ( R 3  (3.13) 
ro+-m 

with 

?(w; t ,  to) = $'("'~,(t, tO)e-if'(n)'o 

= I - ieifl(')'U,(t, 0) ds U,"'(s, O)(V(ws +a) - V(a))e-ix(a)". (3.14) 

It is clear that the formal limit to + -a, t + 00 and w -+ 0 of the second term of (3.14), 
when insetted in (3.12). gives the expression (35) of the first-order correction. The relevant 
estimates to prove (3.4) are as follows. From (3.14). we have (omiting from now on the 
index and argument a) 

s,' 

(3.15) 

As seen in (3.11), the integrand in (3.15) is majorized uniformly in w by an integrable 
function of s, and it tends pointwise to zero by the continuity of V(t). Thus, dominated 
convergence implies 

lim sup 11(3(w; t ,  to) - 1)@ll2 = o 
u-0 ,,lo 

(3.16) 

and, in view of the unitarity of $(U; f ,  to), the limit (3.16) can be extended to all @ E R(Q.-). 
Then, we write the equality (3.14) in the form 

(3.17) 
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with 

By the Schwartz inequality we have, for gl(w; f ,  to). 

(3.19) 

(3.20) 

By assumption, &(V(ws) - V) - V’ satisfies the bound (3.1) and tends in the norm to 
zero as w + 0. By (3.2) with q > 2, the integrand of (3.20) is majorized uniformly 
in w by an integrable function and tends pointwise to zero as w + 0. We conclude by 
dominated convergence that lim-o(x, gt(w; t, to))  = 0, uniformly with respect to Q and 
t .  For gZ(w; t, 10) we have 

CO 

I(x,gz(w:t,ra))l 6 / dsIsl l l (Sht,S) - ~)xI1~l lV’e- i”s~l l~ 
-m 

CO 

6 supli(S(w;t,s)- OXIIZ/ dsIslllV‘e-iH~’+llz. (3.21) 

We conclude from (3.16) that I&+&, gz(w t ,  to)) = 0, uniformly with respect to to and 
t .  Finally, using once more the decay property (3.2). it is easy to see that, as to -+ -CO, 

t -+ CO, the limits of all terms in (3.17) exist so that, for + = S2-(o, 9 E D, 

t.s -m 

m 
$(U)+ = I/r - i o  dsse’H’V‘e-iHS@ +o(gt(w) +gz(w)) (3.22) 

where gl(w) and gz(w) obviously still converge weakly to zero, as w -+ 0, in R W ) .  
When (3.22) is inserted into (3.12), we obtain the result (3.4), (3.5). by setting g(w) = 

L 
Q\(gl(w) + gz(w)) and using the intertwining relations H(ol)CZ$ = QZH, .  

3.2. Discussion of the adiabatic limit 

For a timeperiodic potential, assuming that we are in situation (i) described in the 
introduction, we conclude from (2.19) and (3.3) that 

(3.23) 

(3.24) 

is the transition probability for the static potential V(0r). Thus, in the adiabatic limit, 
the average scattering probability (2.19), for the timedependent problem, converges to 
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the average of the static quantities associated with the family of static potentials V(a) ,  
0 < a < Zn. According to (2.14). we also conclude from proposition 1 that 
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(3.25) 

so that all the sidebands contribute to the low-frequency limit of (2.19). In particular, the 
statistical distribution Pn(w,  'p) of emitted and absorbed quanta (2.17) has a non-trivial limit 
as w -+ 0, and an explicit example is given in section 5. 

Let us discuss now the general structure of the first-order correction. According to (3.4), 
the linear correction to an asymptotic observable Fn(w) = .Ft(w)F.F(w) is, for 'p E D, 

('p, Fu(m)rp) = (S"'p, F S W  + wRe(S"p, FSP'p) + o(w). (3.26) 

From now on, we analyse the structure of this linear correction in formal terms, writing 
simply 

Fc(w)  = F' + o F f  + ~ ( w )  (3.27) 

where 

FU = F ' F S '  FF = S p t F Y + S U t F T .  (3.28) 

Equations (3.27) and (3.28) must be understood in the sense of the quadratic form (3.26). 
with rp e D. Introducing the expression (3.5) into (3.27), (3.28), leads to 

m 
FP = i drteiHo'[Ea, FOL]e-'Ha' Ea = SfiV'(a)QE. (3.29) L 

At this point, it is useful to introduce the symmetric operator (the formal 'time operator') 

(3.30) 

which represents the derivation with respect to energy in the spectral representation of Ho 
[24], i.e. 

on D, for differentiable functions of Ha. From the relation 
3,s" = -i[md*eiHory-u m -W 

c l e  

we deduce 
m 

&Fa = iLwdteiHO'[X', FCL]e-iHO' 

(3.31) 

(3.32) 

(3.33) 

and then, using [To, e"Ho'] = Tte*Ho', we find that FP can be transformed into the sum 
of the two contributions 

F F = K P + D f  (3.34) 
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where 

(3.35) 

and ( A ,  B )  = AB + B A  denotes the anticommutator. Notice that [Ho, Dp] = 0, whereas 
[Ho, Kr] = ia,Fe, implying that Ff does not commute in general with Ho. However, 
since KP is a derivative of a periodic function of a, it has zero average so that 

(3.36) 

is indeed an on-shell quantity, in accordance with (2.21). 
The term Ki' may be called 'kinematical'. It involves only static quantities and it is 

a manifestation, at first order in o, of the fact (already discussed in section 2) that the 
incoming state will find the potential in a configuration which depends on its time of arrival 
in the interaction region (we recall that, classically, the observable -To has the meaning of 
an arrival time at the origin). This is illustrated in the one-dimensional example in section 5. 

On the other hand, the contribution DP may be called 'dynamical' since it incorporates 
the genuine new dynamical effects of the potential on the scattering. The structure of DY 
is also briefly analysed in section 5. Here we conclude from the following corollary that 
potentials of the form u ( x ,  p(t)), depending on f only through a single real scalar periodic 
function p(t), have no first-order dynamical corrections to the averaged probabilities (2.19). 
This includes, for instance, potentials of the form (l.l), setting l ( t )  = fi(t). and potentials 
of the form (1.2) with a ( t )  = a(p(t ) ) .  

Corollary. Let ~ ( t )  be a2r-periodic real function oft, and u(x ,  fi(t)) a potential satisfying 
the assumptions of proposition 1, part (ii). Then Fl =El = 0. 

Proof: One has U'@, &)) = p'(t)w(x, p(t))  with w ( x ,  p(r)) = a,u(x, p)IGL=,(I). 
According to (3.29), FP is of the form Fp = fi'(01)GY where GY is defined as (3.29) with 
u'(x, p(0r)) replaced by w ( x ,  p(a)). Clearly, for (p E D, the function ((p, G:(p) = &(a)) 
depends on 01 only through p(a), and g(p) is finite for each p (p in compact sets) by 
the estimate of proposition 1 ,  part (ii). Thus, the first-order correction can be wrinen as 
((P, FPp) = p'(a)g(p(a)h and its average 

vanishes as a consequence of the periodicity of p(a). 

The linear order correction to the adiabatic limit of sidebands is 

S"(0) = S" f 0s; + o(0) (3.38) 

with 
1 *n 

(3.39) 
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For the asymptotic observables F"(w) = B t ( w ) F S " ( w ) ,  we obtain 

Fn(w) = F" +OF; + o(w) 

where 

F" = SntFS" F; = SYtFSn + SntFS;, 

Introducing [To, e-'Hot] = into (3.5). we can write Sp as the sum 

(3.40) 

(3.41) 

sp = T , A  f sY3B (3.42) 

where S;I,A = -a,S'To (use (3.32)) and Sp,B, which commutes with Ho, is given by 

According to this decomposition, we find that 

where 

and 

FCB = SntFS?,, + S;,\FS". 

(3.43) 

(3.44) 

(3.45) 

(3 A6) 

For Ihe last equality of(3.45) we have used (3.31). and S;,A, S;,! are the Fouriercomponents 
of Sc, and q,B respectively. The first-order contributions to sidebands sum up to the total 
first-order correction to scattering (3.36), i.e. 

(3.47) 

In general, individual sidebands have non-vanishing first-order corrections. However, for 
the cIass of potentials considered in the corollary, these corrections have to sum to zero. 
Examples are given in section 5. 

3.3. Energy transfer in the adiabatic limit 

Since the energy of the scattered particle is not conserved, it is of interest to investigate 
in more detail the energy transfer (2.23) between the particle and the external field. The 
expression of A"@) up to second order in w is readily obtained by inserting the expansion 
(3.4) into (2.23). One finds 

A"@) =WAY + wzA$ + o(w*) (3.48) 
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with 

A; = iS"ta.s" A; = i(sfa,s" + s'ta,sp). (3.49) 

We first comment on the first-order term, which is given by (see (3.32)) 

(3.50) 

For a time-dependent perturbation of the type (1.1) with wz(x)  > 0 (resp. wz(x) < 0) we 
clearly have %" = A'(ar)C2"_t~2W, where Qdi WzQ? is a positive (resp. negative) operator. 
Hence, the sign of the energy transfer is determined by that of A'@). 

However, for the class of potentials considered in the corollary, the averaged first-order 
energy transfer a, vanishes by the same arguments and one has to examine the averaged 
second-order term&. After an integration by parts, using (3.5) and [TO, eiiHor] = FteYHof, 
one can write in the form 

(3.51) 

This formula can be further reduced if the spectrum of HO is simple (see also section 5). 
For instance, for potentials of the form (1.1) invariant under rotations, we can restrict the 
formula to a subspace with fixed angular momentum. In such subspaces, AY reduces to a 
function of energy only, given by 

AY(E) = 21r(EIECLIE) (3.52) 

where, in the spherically symmetric case, IE) stands for the improper eigenvector of HO 
with fixed angular momentum. Then, 

where for the second equality we have used (EITo = iBE(E1. Thus, at given energy E, there 
is a positive or negative energy transfer according to the sign of the quantity (3.53). One 
can check on examples that both signs can occur, according to the value of the incoming 
energy E. 

4. The high-frequency limit 

4.1. The high-frequency theorem 
As mentioned in the introduction, the high-frequency limit is also of interest in various 
physical situations, in particular in the theory of ionization of atoms in strong laser fields. 
The point here is that the fast oscillating Fourier components of the potential do not 
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contribute to the scattering as w -+ CO. We introduce explicitly the Fourier series of 
the periodic interaction V(t) = V(t + 2n), 

CO 

~ ( t )  = Vneinr (4.1) 

U,&) = - dt u(x ,  t)eWin' = u',(x). (4.2) 

*=-CO 

where V. is the multiplication operator by 

2z  r -r 
In this section we make the hypothesis that the potential is sufficiently differentiable with 
respect to its time and space variables. More precisely, we shall assume that u(x .  t )  satisfy 
the following conditions: 

(1) u ( x .  t )  is twice continuously differentiable with respect to t ,  and both u ( x ,  t )  and 
its time derivatives satisfy (3.1); 

(2) the average potential U&) defines a static scattering system (H, Ho), H = NO+ VO, 
with complete wave operators QA and scattering operator S, for which the propagation 
property (3.2) is m e ;  

(3) u ( x , t )  is n-times differentiable with respect to x and the partial derivatives 
a:u(x, t )  and a,a;"v(x,t) satisfy (3.Q m = 1, .. . , n, n > I ,  where 8: = 8;' . . . a m d ,  Xd 

m =ml + .  .. +md. 
According to (l), by partial integration, one has 

(4.3) 

so that the series (4.1) are norm convergent. We decompose the time-dependent Hamiltonian 
(27) as (setting here (Y = 0) 

where 

C 
I s ( x ) l  < - p - n  v > 1 

H(wt)  = N + ?(ut) (4.4) 

?(t)  = ~ ( r )  - VO = v,,e'"' (4.5) 

H = Ho + vo 
m 

has the same properties as V(t). By condition (2). we can apply the chain rule to the pair of 
scattering systems (H(wt ) ,  H) and (H, Ho). The arguments are identical to those leading 
to (3.12) in the previous section. This enables us to represent the scattering operator S(w) 
of the full time-dependent problem as 

S ( w )  = Q!S(o)Q- S(0) = f&(w)i%(w). 
Proposition 2. (i) Assume that conditions (1H3) hold for n > 2. Then, 

s-lim Y ( w )  = S 
w+m 

where S = n!Q- is the scattering operator for the static average potential U&). 
(ii) If in addition (3) holds for n 2 6, then for 9 E 2, 

SU(0)rp = s9 + 0-2s29, + o - 2 f y w )  
where 

m 
= i 1- dt eiHo'Q!MS2-e-iHo'y, 

1 
n2 

M = c- (I(V,,VdH + HV,,V,) - V,HVj) 

converges strongly to zero as w -+ CO. 

nM 
and the vector f 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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Proof. (i) We consider the case a = 0, dropping the index a. In view of (4.6), it suffices 
to show that s-Ii%+- i ( w ) @  = @, for @ = L ' p ,  'p E D. We can represent i ( w ) @  by 
the formula 

Introducing 

(4.11) 

(4.12) 

and performing an integration by parts in the last term of (4.1 I), one obtains 

I 

ds einf U, (t , s) @(os) ?I (os) + [H, 91 (ws) I/r. (4.13) 

Using that (os) is bounded uniformly with respect to 0, the limit to + -00, t + 00, of 
the integrated term vanishes by the estimate (3.2) (p = Q-9). On the other hand, the last 
term in (4.13) can be estimated by 

' j  ds I I~ (os )~~(os )e - iHs~112  + 11 ds 11[H, ?l(ws)]e-iH"@1/2. (4.14) 
w -m 6J -m 

By (3.2), the first integral in (4.14) is convergent. To control the second one, we observe 
that 

-3 

m m 

where aj are the partial space derivatives, and pj are the components of the momentum 
operator. Thus, the second term in (4.14) is majorized by a sum of contributions of the 
form 

and 

(4.16) 

(4.17) 

Our hypothesis on the potential implies that ajVi(w8) as well as a:?l(os) verify (3.1) so 
that the s-inte,d in (4.17) is finite and independent of w,  by (3.2). For (4.16). using the 
intertwining relation, we write 

Ilaj?l;ws)pje"H~@~~2 = t t a j F I w p j ( H + f i )  - I  e -iXs x112 

< 11% ~l(wS)(q)RIlll(q)-nP,(H + Il)-1(4)~llll(4)-"-'x"K l lz. (4.18) 
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In (4.18). (H + p)-' is the resolvant of H evaluated at a sufficiently large positive number 
p (H is bounded below) and x = CL(H0 + p)q, with (Ha + p)p still belonging to 'D. It 
is known that the second factor on the right-hand side of the inequality is finite (lemma 3 
of [23], see also appendix A), so the decay (3.2) also applies to (4.18). We conclude that 
the quantity (4.14) is O(0-l). Thus, S(o) S strongly on 'D, as o -+ 0, and since S(o) 
is uniformly bounded with respect to w,  the convergence holds on the whole of E. The 
proof is the same for Se(@), (Y f 0, since it amounts simply to replacing V, everywhere by 
vneine. 

(ii) To find the first non-vanishing correction to the high-frequency limit (4.7). we carry 
on the integration by parts on the last term of (4.13). Introducing 
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(4.19) 

and observing that ?( t )v i ( t )  = (I/Z)cfv,%)/dt, one finds the following contributions: 

(4.20) 

Using the same arguments as for (4.13), the integrated term goes to zero as to -+ -w, 
t -+ W. Introducing 

(4.21) 

and ?(t)?f(t) = (i)d?::(t)/dt, the first and last integral of (4.20) can be integrated by parts 
one step further and seen to be O(w-') by an immediate generalization of the treatement 
of the terms (4.13). The multiple commutator of local potentials with H can be rearranged 
as in (4.15) as the sum of monomials of derivatives of these potentials times powers of the 
momentum, provided that assumption (ii) holds. Then, bounds can be obtained as in (4.18) 
using the result in appendix A. For the second and third integrals, we write 

(4.73 
1 1 

= C - p ,  V,V-,] - c -[H, V"V,]e'"+m)' 
"fo ""0 nm 

n*m 
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and 

The time-dependent contributions of (4.22) and (4.23) can be integrated by parts (integrating 
the phase factors eiCnim)'), and controlled by the same arguments as hereabove. Finally, 
combining together the time-independent contributions of (4.22) and (4.23), we remain with 
the term 

. I  1 dseix'U,,,(t, s)Me-iH"@ (4.24) 

up to a correction of order d3. As a consequence of the same estimates as in part (i) of the 
proposition, one sees easily that eiHrU,(t, s) tends pointwise strongly to e-'HS, as w + 00, 

Thus, using dominated convergence, the strong limit to + -CO, t + m and w -i m of 
the integral (4.24) exists and, by intertwining and (4.6). is given by the result of part (ii) of 

uniformly with respect to t (note that for any s, e-iHs@ = R-e-'H0s9 with e-iHos VI E P. 

the proposition. 0 

4.2. Discussion of the high-frequency limit 

According to proposition 2, as w -+ m, the scattering operator Sa(w) approaches the static S 
associated with the time-independent average potential U O ( X ) .  Since the latter is independent 
of 01, we also find that, in this limit, the scattering process becomes independent of the initial 
phase 01 of the potential or, equivalently, of the time of incidence of the incoming particle 
in the interaction region. 

According to (2.14), we also conclude from part (i) of proposition 2 that 

s-limS"(w) = 0 
0-m (4.25) 

for n # 0. In contrast to the adiabatic case, the sidebands do not contribute to the high- 
frequency limit of (2.19). In fact, if the potential satisfies the assumptions of part (ii) of 
proposition 2. we have the stronger result 

S y o )  = O(w-2) (4.26) 

for n # 0, since the correction (4.9) is independent of 01. 

is, for 9 E D, 
The first non-vanishing correction to the asymptotic observable F'(o) = S't(w)FSu(o) 

( V I ,  F ' ( ~ v I )  = (S9, F S q )  + w-* Re(Sv, F S A  + o(w-'). (4.27) 

On a more formal level, we can also write 

F u ( o )  = Fo +U-' Fz + o(o-') (4.28) 
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where FO = St F S  and 
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m 
FZ = StF& + S i F S  = i dteiHo"[F,-,, Q'_MCL]e-'Ho'. (4.29) L 

For a potential of the form (I.]), the operator M is given by 

(4.30) 

where for the last equality we have used (4.15), and Wz denotes the multiplication operator 
by the function W Z ( X ) .  

5. Application to one-dimensional scattering 

5.1. The adiabatic limit for transmission and reflection probabilities 

We introduce the improper eigenvectors / E ,  LIZ) of Ho, corresponding to positive and negative 
momentum p, satisfying the orthogonality relation 

(E,uIE',u') = 6,,r6(E - E') (5.1) 

and the projection operators 

onto the set OF states with positive and negative momentum. Then, if (o is an incoming state 
describing a particle approaching the potential from the left, i.e. F+p = (o, the corresponding 
average transmission and reflection probabilities are given by 

According to proposition 1, one obtains 

(5.4) 

where AZ(E) = (2~p'~(E)l+) are, respectively, the transmission and reflection amplitudes 
for an incident particle with momentum k = a and static potential v ( x ,  U). 

One can use (5.4) to investigate the effect, on the static transmission and reflection 
probabilities, of a slow time-dependent perturbation of the potential. For the case of a 
displaced potential of the form (1.2) the answer is clear since the amplitudes AZ(E) for 
different a differ only by a phase factor and thus the average probability (5.4) is equal to that 
determined by u ( x ) .  However, for an additive time-dependent perturbation, either increase 
or decrease in the transmission and reflection probabilities can occur. More specifically, 
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consider an interaction of the form (1.1) with X(wt) = hocos(wt), ho > 0, and denote by 
A d E ,  A) the transmission and reflection amplitudes for the static potential wl (x )+hwZ(x ) .  
If, for a given energy E ,  IA*(E, A)]' is a convex (concave) function of A, p.1 < &, then the 
perturbation of the coupling will increase (decrease) the probability in the adiabatic limit. 
To show this, we have to compare the average (5.4) with the static (,I,, = 0) probability 
( A f ( E ,  a)!'. If IA*(E, A)/' is convex, we have 

lA:(E)l' = IAa(E,Aocosa)l* 2 I A I ( E , O ) I ' + A O C ~ S ~ ~ ~ ! A + ( E ,  h)l:=, (5.5) 

yielding 

and conversely for the concave case (see also the related discussion in ['E]). 

corrections (3.35) to transmission and reflection probabilities. For K; we have 
Let us now analyse the form taken by the first-order 'kinematical' and 'dynamical' 

1 
((0. KPp) = - 3  (v, {TO, a a l A ~ 1 2 b )  = -Re(Tov, a,lA",'p) 

= J d m ~ ~ B ' ~ ~ ~ ~ . l ~ ~ ~ ~ ~ l Z / ~ ~ ~ ~ l z  (5.7) 

where for the last equality we have used (3.31), and p ' ( E )  = a ~ a r g p ( E ) .  If p(E) is real, 
this correction vanishes. In contrast, if p(E) has a non-vanishing phase B ( E ) ,  we observe 
that the mean position of the incoming state p is expressed by 

(5 .8)  

where X E  = -@(E) and U = k / m  is the velocity. Thus, we may write, to first order in w,  

(9, (F* +oKY)p) = l m d E  (IA$(E)Iz -w-a,lA;(E)12) U lp(E)[' 
XE 

For p(E) real and well peaked at about E ,  - X E / V  represents the time difference between 
the preparation of the two initial states eipcE)p(E) and p(E), so that (5.9) is a manifestation, 
at first order in w, of the fact that the two states experience the action of the potential with 
a time lag - X E / u .  

To analyse the structure of the 'dynamical' contribution DY, we note that, formally, 
( E ,  &)To = iBE(E, +I, and find 

m 

(I, D W  = Jd dEDP(E)lp(E)l2 (5.10) 

where 

Dy(E) =in(E,f((To,Ian,FUI](E,+) = ~*R~~E~(E,+([%",F"][E',+)IE,=E. (5.11) 
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Working out (5.11) one step further in the case of transmission, D f ( E )  can be rewritten as 
the sum 
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Dy(E) = 2ir(E. + ] P I E .  +)&]A:(E)la + P ( E )  (5.12) 

where the interference contribution P ( E )  is given by 

(5.13) 

We shall not take the calculation of the expressions for (5.12), (5.13) any further as they 
are rather complicated. Notice, however, that in the special case of a barrier (or well), the 
matrix elements (E ' ,u ' lF[E,  0) are entirely expressible in terms of the tnnsmission and 
reflection coefficients, by simple integration (see 1261 for the method). 

5.2. The adiabatic limit for sidebands 

The adiabatic limit of aansmitted and reflected sidebands 

P;(@, P) = l l ~ d " ( @ ) ~ I l ~  = dEPz(@, E)l9(E)I2.  (5.14) 

is 

where 

(5.15) 

(5.16) 

For a modulated potential of the form (1.1), the adiabatic sidebands probabilities (5.16) 
cannot, in general, be evaluated explicitly (an exception is the modulated &function barrier 
which was considered in [4]). On the other hand, for a displaced potential of the form (1 2). 
one has So = e'p'(a)Se-'""), yielding 

Pt(E) = &,olA+(E)I2 "!!(E) = lcn(E)I21A-(E)l2 (5.17) 

where the A&) are, respectively, the transmission and reflection amplitudes for the 
potential u ( x ) ,  and 

Thus, the statistics of quanta (2.17), i.e. 

P"(E) = P;(E) + P I ( E )  

(5.18) 

(5.19) 

is fully determined by the coefficients c.(E) in the adiabatic limit. In particular, for 
a(a) = @cosa, we have c.(E) = i"Jn(-2k@), where the J. are Bessel functions of 
the first kind. 
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For the displaced potential we can even find explicitly the n-dependence of the first-order 
corrections. Indeed, one has 

(5.20) 

independent of a. Thus, using 

we immediately find for the reflected sidebands 

??(U, E )  = P l ( E )  + oP!.,(E) + O(W) 

where P l ( E )  is given by (5.17) and 

(5.22) 

n 
2k ?!.,(E) = naEPl(E) + -Ic.(E)IzE(E). (5.24) 

The first term of (5.24) arises from the contribution (3.45) and B ( E )  is the on-shell part of 
the operator 

B = F+(StF-S~,~ + S:,,F-S)F+. (5.25) 

In the same way, one finds that the correction to the transmitted sidebands vanishes for all 
n, i.e. 

? J ; ( o , E )  ='P;(E)+o(w).  (5.26) 

One sees that the statistics of sidebands at first order is again determined by knowledge of 
the coefficients c.(E), given by (5.18). At this order, only the reflection of the particle is 
accompanied by a process of emission or absorption. 

5.3. Energy transfer 

We can also immediately deduce the form of the second-order energy transfer from (2.24). 
(5.23) and (5.26). 

The last equality follows from (5.24) and the fact that 

(5.28) 
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The function C(E) determines the sign of the energy transfer and can be found from (5.24), 
(5.25). We can give a more explicit expression for C(E) in the case of a parity invariant 
potential u ( x )  = U ( - x ) .  For a particle coming from the left, we have to compute the 
restriction of (3.51) to the subspace F+X. According to 
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AY = af(Or)eiPu(a)A, e-ipa(4 (5.29) 

where 

(5.31) 

one obtains 

+ (a'(Or))2a(oc) 2Ho -mdt&Ho'iF+(3$AI - Al$E)F+e-iHo'. (5.32) FJ" 
Using $ = F+ - F-, the second contribution in (5.32) vanishes. For the first one we insert 
the identity I = F+ + F- between E and A,, and use the fact that FtBF- = -F-3Ft 
(since a,u(x) = -a,u(-x)). This yields 

(5.33) 

and the same result remains clearly hue for a particle coming from the right (i.e. replacing 
F+ by F-). Finally, introducing the improper eigenvectors (5.1). we immediately find that 
the on-shell part C(E) of (5.33) takes the form of an energy derivative, given by (E defined 
in (5.21)) 

(5.34) 

This quantity can be positive or negative, depending on the value of the incoming energy 
E. 

5.4. The high-frequency limit 

We conclude our study of one-dimensional examples by asking what is the effect, on the 
transmission probability, of introducing a high-frequency time-dependent perturbation. For 
modulated barriers of the form (Ll), with h(wt) = ho cos(wt), the average potential is equal 
to the static one (ho = 0). Thus, the addition of a time-periodic perturbation of zero average 
has no effect on the scattering process in the limit w --t W. The situation is different for 
an oscillating position potential of the form (1.2). with say a(ot) = aocos(or), since the 
effective static potential 

C(E) = 4n2ar((E, +IEIE,+)'+ I(E, -ISIE, +)I2). 

(5.35) 
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may, in general, differ appreciably from u ( x ) .  For instance, if u ( x )  is a banier and a. is 
sufficiently large, vo(x) is considerably broader and reduced in height with respect to U@). 
It can also develop a bimodal structure which may give rise to interesting resonance effects 
at some specified energies. The effective potential (5.35) is known as the 'dressed' potential 
associated with U@), in the theory of atoms in intense, high-frequency laser fields [7-IO]. 

Finally, we specialize the correction (4.29) to the case of an oscillating potential of 
the form (1.1) with A ( t )  = hocost. According to (4.30), we find for the transmission 
probability the formula ( A + ( E )  here denotes the static amplitude for = 0) 

) 
m 

P+(@, E) = I A + ( E ) I ~ +  - Im A ; ( E ) A - ( E ) /  dx ( a , W 2 ( X ) ) * J r * ( E , X ) ~ + ( E , x )  
-m 

(5.36) 

where the kernels Jr*(E,x)  = - ( x l S L l E , + )  are the usual solutions of the 
stationary Schrodinger equation for the averaged potential U&) = w1 ( x ) .  When W I  ( x )  = 0, 
the w-' term vanishes in (5.36) (since A J E )  = 0). But, by unitarity, P+(w,E) = 
1 - P-(oJ, E), and after a straightfoward calculation of the reflection coefficient P-(w, E ) ,  
one finds 

(3 ( 
+ O W 2 )  

6. Concluding remarks 

We have proven that the scattering by a local time-periodic potential has well defined 
low- and high-frequency limits, and we have studied the first terms of the corresponding 
asymptotic expansions of scattering probabilities for suitably smooth potentials. All our 
considerations are non-perhrbative with respect to the potential strength. Inspection of the 
proofs of both limits shows that they will also apply to potentials with other types of time 
variations, not necessarily periodic, for instance potentials switched on and off in time. 

The status of both expansions is not the same. The validity of the low-frequency 
expansion requires differentiability of the potential in its time variable and a fast spatial 
decay (to have the nth-order term defined one needs to apply the lemma in section 3 with 
q sufiiciently large, see [22]). On the other hand, as seen from proposition 2, the high- 
frequency limit will necessitate strong local differentiability properties for the potential with 
respect to its spatial variables. 

Already at the lowest order, the corrections to the adiabatic limit have a complicated 
structure. Their explicit calculation requires, in principle, the full solutions of the static 
scattering problems for the potentials v ( x ,  a), and this complexity increases considerably for 
higher-order terms. One can, however, emphasize an interesting point: for smooth periodic 
potentials depending on time only via a single scalar function (see the corollary in section 3), 
the first non-vanishing correction to scattering probabilities at low and high frequency are 
of order m2 and O J - ~  respectively. Thus, scattering with these types of interaction has 
a certain stability with respect to dynamical perturbations. In particular, a potential with 
oscillating coupling and zero average is essentially transparent in the high-frequency regime 
(see (5.37)). 
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A number of questions deserve further investigations. We mention some of them. The 
first correction terms can be worked out in more detail in specific cases: for instance if the 
static potential has a resonance, how stable is the resonance under slow oscillations of the 
potential and what is the nature of the energy transfer with the external field? We have not 
established here the high-frequency expansion beyond the U* term of proposition 2(ii). 
In particular, one could expect the sideband probabilities to be very small for sufficiently 
smooth potentials. They have been shown to be o(d*) ,  but what is their asymptotic 
behaviour? Interesting comparisons with the corresponding classical scattering problems 
could also be made in a semi-classical regime. In the case when the potential has local 
singularities (square potential barrier, Coulomb potential), what is the behaviour of the 
correction to the high-frequency limit? For instance, we have checked that for a perturbation 
by a modulated &function, the corrections are 0(1/J'Z) only. 

Finally, in this paper, we have only used the time-dependent formulation of scattering 
theory. How to recover the results in the quasistationary formalism 1141 is an open problem. 
We plan to come back to these questions in future work. 

Appendix 

According to lemma 3 of [SI, 

Il(q)-'(H +p)-'(q)"ll <CO Il(q)-'pj(H+p)-'(q)'II <CO. (A.1) 

To prove part (ii) of proposition 2, we also need the result 

I1(~)-'pn(H+/L)-n(~)oII < 03 ( A 4  

where p" = pj ,  . . . pjm and n is a given integer. We shall prove (A.2) by a recursion 
procedure. We assume it is true up to n and have to show it for n + 1. To simplify the 
notation we write p = pi for all j = I ,  . . . , d without distinction between the different 
components of p .  We have 

p t I ( ~  + p)-&tl) = p ( H  + p)-'p"(H + P)-" + P I P " ,  (H + p)-'I(H + PL)-". 

The first term of (A.3) is bounded by assumption. For the second term we observe that 

[p",  ( H  + p1-11 = ( H  + @)-'W. P " l W  + @)- ' - - ( H 4- p)-'[V, p"l(H + p)-' ,  

Inserting 

(A.3) 

(A.4) 

in (A.4), then using (A.1). one finds that the second term of (A.3) is also bounded, provided 
that all the partial derivatives ai V, j = 1,. . . , n, satisfy (3.1). Thus, (A.2) is true for n+ 1. 
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